Increased capillarity in leg muscle of finches living at altitude.

نویسندگان

  • R T Hepple
  • P J Agey
  • L Hazelwood
  • J M Szewczak
  • R E MacMillen
  • O Mathieu-Costello
چکیده

An increased ratio of muscle capillary to fiber number (capillary/fiber number) at altitude has been found in only a few investigations. The highly aerobic pectoralis muscle of finches living at 4,000-m altitude (Leucosticte arctoa; A) was recently shown to have a larger capillary/fiber number and greater contribution of tortuosity and branching to total capillary length than sea-level finches (Carpodacus mexicanus; SL) of the same subfamily (O. Mathieu-Costello, P. J. Agey, L. Wu, J. M. Szewczak, and R. E. MacMillen. Respir. Physiol. 111: 189-199, 1998). To evaluate the role of muscle aerobic capacity on this trait, we examined the less-aerobic leg muscle (deep portion of anterior thigh) in the same birds. We found that, similar to pectoralis, the leg muscle in A finches had a greater capillary/fiber number (1.42 +/- 0.06) than that in SL finches (0.77 +/- 0.05; P < 0.01), but capillary tortuosity and branching were not different. As also found in pectoralis, the resulting larger capillary/fiber surface in A finches was proportional to a greater mitochondrial volume per micrometer of fiber length compared with that in SL finches. These observations, in conjunction with a trend to a greater (rather than smaller) fiber cross-sectional area in A than in SL finches (A: 484 +/- 42, SL: 390 +/- 26 micrometer2, both values at 2.5-micrometer sarcomere length; P = 0.093), support the notion that chronic hypoxia is also a condition in which capillary-to-fiber structure is organized to match the size of the muscle capillary-to-fiber interface to fiber mitochondrial volume rather than to minimize intercapillary O2 diffusion distances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological Adaptations to Hypoxic vs. Normoxic Training during Intermittent Living High

In the setting of "living high," it is unclear whether high-intensity interval training (HIIT) should be performed "low" or "high" to stimulate muscular and performance adaptations. Therefore, 10 physically active males participated in a 5-week "live high-train low or high" program (TR), whilst eight subjects were not engaged in any altitude or training intervention (CON). Five days per week (~...

متن کامل

Muscle tissue adaptations to hypoxia.

This review reports on the effects of hypoxia on human skeletal muscle tissue. It was hypothesized in early reports that chronic hypoxia, as the main physiological stress during exposure to altitude, per se might positively affect muscle oxidative capacity and capillarity. However, it is now established that sustained exposure to severe hypoxia has detrimental effects on muscle structure. Short...

متن کامل

The Changes of Leg Musclus Activities Following Increase of Gait Velocity

Purpose: Motor control evaluation and analysis of it"s specifications for diagnosis of neuromuscular diseases is new approach in clinical electroneurophysiology, that is based on the changes of electromyography responses and classic reflexes in this field. In this study quantitative power spectrum frequency used for changes of motor control strategies. Materials and Methods: Twenty five health...

متن کامل

Muscle angiogenic growth factor gene responses to exercise in chronic renal failure.

Patients with chronic renal failure (CRF) have impaired exercise capacity even after erythropoietin treatment. We recently showed that although this is explained in part by reduced convective O(2) delivery to muscles, there is also an impairment of O(2) transport from muscle capillaries to the mitochondria. Given the importance of the capillary surface area for capillary mitochondrial O(2) tran...

متن کامل

Poor relationship between arterial [lactate] and leg net release during exercise at 4,300 m altitude.

We evaluated the hypotheses that on acute exposure to hypobaric hypoxia, sympathetic stimulation leads to augmented muscle lactate production and circulating [lactate] through a β-adrenergic mechanism and that β-adrenergic adaptation to chronic hypoxia is responsible for the blunted exercise lactate response after acclimatization to altitude. Five control and 6 β-blocked men were studied during...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 85 5  شماره 

صفحات  -

تاریخ انتشار 1998